Вы здесь

Том13. Абсолютная точность и другие иллюзии. Секреты статистики

Том13. Абсолютная точность и другие иллюзии. Секреты статистики

Таким образом, ожидается, что если обувь на конкретной ноге изнашивается больше, при чередовании материалов случайным образом возможное влияние этого фактора будет устранено.

* * *

УИЛЬЯМ СИЛИ ГОССЕТ, ОН ЖЕ «СТЬЮДЕНТ»

Любой, кто хотя бы немного изучал статистику, непременно сталкивался с распределением Стьюдента, которое используется даже чаще, чем нормальное распределение, или с t-критерием Стьюдента для сравнения средних значений.

Стьюдент — это псевдоним, которым подписывал свои работы Уильям Сили Госсет (1876–1937), внесший огромный вклад в статистику. Всю свою жизнь он проработал на пивоваренном заводе Guinness в Дублине.

В начале XX века, когда Госсет окончил курсы математики и химии в Университете Оксфорда, компания Guinness перешла в руки юного наследника, который решил отойти от традиционных способов изготовления пива и воспользоваться помощью ученых в разработке новых, более совершенных способов пивоварения. Одним из тех, кто был принят на работу, был Стьюдент. Он быстро понял, как важно использовать методы статистики при сравнении различных рецептов приготовления пива. Было необходимо изучить влияние сырья, характеристики которого существенно варьировались и были подвержены воздействию факторов окружающей среды. Требовалось проводить эксперименты, но их число всегда было недостаточным, и нужно было делать выводы на основе небольшого объема доступных данных. До того времени считалось, что использованные выборки всегда были достаточно велики, чтобы по ним можно было точно оценить параметры генеральной совокупности. Однако при работе с малыми выборками оценки были неточными, и ими нельзя было руководствоваться. Госсет занялся поисками решения этой задачи и опубликовал свои выводы под псевдонимом Стьюдент, поскольку сотрудникам компании запрещалось публиковать статьи с результатами своих исследований.

Существует несколько версий того, как и почему Госсет выбрал себе такой псевдоним. По одной из версий, в компании Guinness стало известно об увлечении Госсета математикой уже после его смерти, однако другие источники указывают, что в компании знали о том, что он публикует статьи, а псевдоним Стьюдент предложил сам директор. По-видимому, целью Госсета было не сохранить в секрете разрабатываемые им теории, а скрыть от конкурентов, что Guinness использует статистические методы для улучшения качества продукции.

* * *

Выбор материала случайным образом не ведет к дополнительным затратам и позволяет исключить влияние прочих известных и даже неизвестных факторов. Похожим примером является анализ износа различных видов покрытия, которое наносится на стекла очков. Если одной группе людей раздать очки с одним покрытием, другой — с другим покрытием и по прошествии некоторого времени измерить его износ, то на степень износа очевидно повлияет не только материал, но и то, как люди ухаживали за очками, факторы окружающей среды и другие причины.

Следовательно, как и при анализе материала для подошв, наилучшим вариантом будет раздать всем очки, в которых на одно стекло будет нанесено одно покрытие, на второе стекло — другое покрытие (разумеется, это невозможно, если цвета покрытия отличаются). Стоит ли выбирать покрытие случайным образом или же можно всегда использовать покрытие А для правых стекол, покрытие В — для левых?

Ученые, проводившие подобные эксперименты, говорят, что мы всегда начинаем протирать очки с одного и того же стекла. Тот, кто сначала чистит правое стекло, всегда чистит первым именно его, а то стекло, которое протирается первым, как правило, будет чище. Поэтому всегда лучше производить выбор случайным образом.

Сделайте это сами

Существуют городские легенды (кто знает, возможно, это не просто легенды), которые можно проверить с помощью статистики. Рассмотрим несколько примеров.

Помогает ли чайная ложка удержать газ в бутылке шампанского?

Некоторые люди считают, что если опустить ложку в горлышко бутылки шампанского, то из нее не будет выходить газ (или по крайней мере он будет выходить медленнее, чем из открытой бутылки) и вино дольше сохранит свой вкус. Как развеять сомнения? Попробовать, то есть провести эксперимент.

Эта задача похожа на задачу о дегустаторе чая. Можно попросить кого-нибудь попробовать шампанское из бутылки, в горлышко которой положили ложку, затем из бутылки с открытым горлышком. Мы уже знаем, что одного бокала из каждой бутылки недостаточно. Нужно налить минимум три бокала из одной бутылки и столько же — из другой. Бутылки должны быть полностью одинаковыми и должны храниться в одинаковых условиях. Единственная разница должна состоять в том, что в горлышко одной бутылки положили ложку.

Вероятность случайно угадать все три бокала из бутылки, в горлышко которой положили ложку, равна 5 % (напомним, что три предмета из шести можно выбрать 20 разными способами, лишь один из которых является правильным). Чтобы снизить вероятность случайного угадывания, нужно предложить дегустатору больше бокалов, но следует учесть, что после определенного числа бокалов он уже не сможет четко различать вкус шампанского.

Можно дать попробовать шампанское нескольким людям, но нужно быть внимательным: в этом случае вероятность случайного угадывания возрастет. Если вероятность того, что один человек точно укажет все три бокала, равна 5 %, то вероятность того, что один из пяти человек верно определит все три бокала, будет равна примерно 40 %, и сделать какие-то точные выводы будет нельзя.

Очевидно, что можно использовать прибор, измеряющий содержание газа в вине, и получить абсолютно точный результат. Однако не стоит забывать, что прибор может указать на различия, которые будут неощутимы на вкус, а между тем именно они представляют для нас интерес. Следовательно, вопреки показаниям прибора, класть ложку в горлышко бутылки не имеет смысла. По этой же причине не стоит доверять проведение эксперимента дегустатору вина, способному определять его вкус с исключительной точностью.

Умеете ли вы выбирать дыни?

Задача о выборе спелой дыни еще больше похожа на задачу о дегустаторе чая. Некоторые люди утверждают, что умеют выбирать спелую дыню по весу, на звук и так далее. Чтобы определить, так ли это на самом деле, можно выбрать пять дынь случайным образом и предложить знатоку выбрать из них одну, по его мнению, самую спелую. Далее нужно взять по одной дольке из каждой дыни и снова предложить выбрать самую спелую, но теперь уже на вкус. Разумеется, в обоих случаях знаток должен указать одну и ту же дыню. Недостаток этого эксперимента заключается в том, что вероятность случайного угадывания равна 1/5 (20 %), следовательно, результат будет ненадежным. Однако вероятность случайного угадывания в двух случаях из двух составляет всего 4 %, в трех случаях из трех — 8 %, что крайне маловероятно, если знаток действительно не умеет выбирать спелые дыни.

Страницы


В нашей электронной онлайн библиотеке вы можете бесплатно и без регистрации прочитать «Том13. Абсолютная точность и другие иллюзии. Секреты статистики» автора Грима Пере на телефоне, андроиде, айфоне, айпаде. Сейчас вы находитесь в разделе „Глава 5Что лучше? Что эффективнее? Как формировать выборки для ответов на подобные вопросы“ на странице 4. Приятного чтения.