Вы здесь

Том13. Абсолютная точность и другие иллюзии. Секреты статистики

Том13. Абсолютная точность и другие иллюзии. Секреты статистики

Как представить целое, зная лишь его часть


Одна из наиболее типичных задач статистики — сделать выводы о целом на основании данных о его части. Это целое называется генеральной совокупностью. Генеральная совокупность может представлять собой множество рыб в озере, множество изделий, выпущенных заводом за последний год, множество жителей, имеющих право голоса на ближайших выборах, или множество людей, страдающих от определенного заболевания.

Тщательное изучение генеральной совокупности возможно крайне редко. Опросить всех избирателей, чтобы узнать, за кого они будут голосовать на следующих выборах, нереально и также нереально опросить всех, кто болеет определенной болезнью, чтобы узнать, как подействовало новое лекарство. Конечно, если нас интересует прочность изготовленных изделий, которую нельзя определить, не разрушив изделие, то можно разрушить все произведенные изделия, чтобы определить прочность каждого, но такой подход не выглядит самым разумным.

Вместо этого изучается часть генеральной совокупности, которая называется выборкой. На основе результатов, полученных при изучении выборки, оцениваются характеристики генеральной совокупности. Правила вычисления вероятностей позволяют нам получить информацию о качестве этой оценки с помощью ряда понятий, в частности «доверительный интервал» и «предельная ошибка».

Очевидно, что наши выводы будут справедливы тогда и только тогда, когда выборка будет репрезентативной. Если она не является репрезентативной, то очевидно, что по ней нельзя будет сделать какие-либо выводы о генеральной совокупности. В некоторых источниках повышенное внимание уделяется математическим аспектам (так как использование непонятных математических терминов — эффектный, хотя и дешевый прием), а способ формирования выборки не указывается. Правильное формирование выборки — достаточно дорогостоящий процесс, но этот аспект крайне важен, так как именно он гарантирует корректность выводов.

Оценка параметров генеральной совокупности с помощью репрезентативной выборки.

Сколько рыб в озере? Сколько машин такси в городе?

Далее мы рассмотрим два примера оценки параметров генеральной совокупности, в частности ее размера, с помощью выборок.

Рыбы

Подсчитать, сколько всего рыб в озере, непросто, особенно если озеро большое, а вода в нем мутная. Тем не менее биологи знают, как решить эту задачу. Разумеется, для этого нужно использовать методы статистики. Очень часто используется так называемый метод двойного охвата, который заключается в следующем.

1. Нужно выловить некоторое количество рыб, пометить их и выпустить обратно в озеро. Разумеется, ловить рыбу нужно так, чтобы не поранить ее. Для этого рыбу можно оглушить электрическим током. Метка не должна влиять ни на подвижность рыбы, ни на ее выживаемость. Также необходимо, чтобы метка сохраняла длительную устойчивость к воздействиям среды.

2. Должно пройти некоторое время (порядка нескольких дней), чтобы помеченные рыбы распространились по всему озеру. Затем нужно заново выловить определенное количество рыб (именно в этом заключается суть метода двойного охвата), необязательно такое же, как в первый раз.

3. Нужно произвести расчеты: если в озере N рыб, а мы пометили М из них, то соотношение помеченных рыб к общему их числу равно M/N. Объем повторно взятой выборки, которую можно считать репрезентативной выборкой рыбы в озере, равен С. Из С выловленных рыб R помеченных. Разумно предположить, что доля помеченных рыб во второй выборке равна доле помеченных рыб в озере, иными словами,

Таким образом, примерное число рыб в озере N равно

Рассмотрим пример с конкретными числами.

Сначала вылавливается и помечается М рыб (их можно считать случайной выборкой из N рыб, обитающих в озере). В нашем случае М = 13.

Мы выжидаем некоторое время, чтобы помеченные рыбы равномерно распределились по всему озеру, и вылавливаем С рыб, из которых R имеют метку. В нашем случае С = 15, R = 3.

Произведем вычисления. Число рыб в озере примерно равно:

N = M·C/R = 15·15/3 = 75

Но что означает «примерно равно»? Если вы подсчитаете число рыб на рисунке в нашем примере, то увидите, что их всего 67. Следовательно, погрешность в расчетах составляет 12 %. Эта ошибка больше или меньше, чем следовало ожидать? Какова возможная величина ошибки при использовании этого метода?

Страницы


В нашей электронной онлайн библиотеке вы можете бесплатно и без регистрации прочитать «Том13. Абсолютная точность и другие иллюзии. Секреты статистики» автора Грима Пере на телефоне, андроиде, айфоне, айпаде. Сейчас вы находитесь в разделе „Глава 3Как представить целое, зная лишь его часть“ на странице 1. Приятного чтения.