Вы здесь

Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики

Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики

Размышляя об N-ном количестве измерений


Наиболее простые проблемы физики связаны с рассмотрением объекта, движущегося под воздействием некой силы. Однако наблюдать такую ситуацию в реальном мире мы не можем: Вселенная — это совокупность огромного количества частиц, которые взаимодействуют друг с другом различным образом, и газ — идеальный пример такого взаимодействия. Вообразить движение всех этих частиц относительно просто, но как выразить это математически? Для ответа на вопрос физикам и математикам пришлось дать новое определение понятию пространство и превратить его в математический объект. Ученые разработали модели различных типов пространств, которые очень отличаются от нашего: в этих моделях кратчайшая линия, соединяющая две точки, не является прямой или в них существует больше направлений, чем вверх и вниз, направо и налево, вперед и назад. Применение таких моделей вышло далеко за границы изучения газов: они подходят как для описания пространства-времени, так и для анализа работы биржи.

Что такое измерение

Обычно говорят, что пространство, в котором мы живем, имеет три измерения, то есть объекты в нем обладают некоторой глубиной, хотя в математической модели этот тезис формулируется намного точнее.

Понятие измерения связано с понятием координаты. Вспомним, что координаты — это группа чисел, которые позволяют определить положение тела. Долгота и широта, например, показывают нам, как найти объект на поверхности Земли.

С математической точки зрения число измерений — это количество координат, необходимое для определения положения тела.

Самый простой случай — это прямая, которую математики обычно называют числовой прямой, поскольку она образована из действительных чисел, то есть всех целых чисел, таких как 1, 2, 3 или —5; дробей, таких как 3/4, и иррациональных чисел, таких как квадратный корень из двух или число π.

* * *

РАЦИОНАЛЬНЫЕ И ИРРАЦИОНАЛЬНЫЕ ЧИСЛА

В античности считали, что любое число можно выразить в виде частного; то есть что для любого числа а должны быть два таких натуральных числа р и q, что:

a = p/q

Однако пифагореец Гиппас из Метапонта открыл, что это не так. Например, квадратный корень из двух нельзя выразить в виде частного двух натуральных чисел. Пифагорейцы назвали такие числа иррациональными и, как гласит легенда, даже пытались скрыть от мира само их существование, отправив Гиппаса в изгнание.

Сегодня иррациональные числа вполне привычны, узнать их можно по десятичной записи: в ней такие числа имеют бесконечное число знаков после запятой с непериодичной последовательностью.

Рациональные и иррациональные числа называют действительными и связывают их с положением точки в ее измерении.

* * *

Представим, что числовая прямая — это бесконечно длинная проволока, по которой ползет муравей. Если мы возьмем любую точку и обозначим ее как 0, мы сможем определить положение муравья, сказав, за сколько метров от нее он находится. Ноль обычно называют началом координат. Поскольку для определения положения муравья нам необходимо только одно число, говорят, что проволока — это одномерное пространство.

На практике для указания положения нужно больше чисел. Например, чтобы определить на GPS-карте местоположение нашего автомобиля, нужно два числа: горизонтальное и вертикальное положение на экране. Значит, карта — двумерное пространство, поскольку для определения положения частицы на ней необходимы две координаты.

Теперь мы легко понимаем, как определить положение объекта в трехмерном пространстве — для этого нам нужно не меньше чем три числа: одно — для определения высоты тела и два — для определения его положения на плоскости.

Положение частицы может быть представлено группой чисел. Рассмотрим случай частицы на плоскости.

Ее положение задано двумя точками: 5 для горизонтального положения и 7 — для вертикального. Если обозначить положение частицы через r, можно записать:

Страницы


В нашей электронной онлайн библиотеке вы можете бесплатно и без регистрации прочитать «Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики» автора Арройо Эдуардо на телефоне, андроиде, айфоне, айпаде. Сейчас вы находитесь в разделе „Глава 2Размышляя об N-ном количестве измерений“ на странице 1. Приятного чтения.