Вы здесь

Том 27. Поэзия чисел. Прекрасное и математика

Том 27. Поэзия чисел. Прекрасное и математика

Почему оценить красоту математики непросто


Как мы уже говорили в начале предыдущей главы, никто не удивится, если случайный прохожий, которого мы спросим об эстетической ценности математики, лишь скептически поднимет брови. Мы же считаем, что эта эстетическая ценность, безусловно, существует, и сомнения случайного прохожего означают лишь одно: оценить красоту математики непросто. Здесь и возникает вопрос, вынесенный в название главы.

Пять чувств и изобразительное искусство

Мы знаем, что красота математических рассуждений заключается в гармоничном сочетании идей, которые их образуют, подобно тому как красота здания складывается из гармоничного сочетания его архитектурных элементов. Однако большинству людей намного сложнее оценить красоту теоремы, чем красоту готического собора.

В чем же причина? По нашему мнению, ответ на этот вопрос лежит в области физиологии: людям сложно оценить эстетическую ценность математических рассуждений, так как нам не хватает отдельного чувства, позволяющего автоматически различить структуру идей, составляющих рассуждения, и оценить гармоничность их сочетания.

Прежде чем обсудить это утверждение, приведем несколько примеров, показывающих тесную связь между нашими чувствами и визуальным искусством.

Живопись

Начнем с живописи. Можно сказать, что красота картины заключается в гармоничном сочетании ее элементов: форм, цветов, композиции, пространства, света и даже текстуры. Из утилитарных соображений рассмотрим живопись с чисто формальной точки зрения, оставив в стороне ее этическую, моральную и другую ценность и функции. Об этом мы поговорим позже.

Как бы то ни было, все элементы картины, а также связи между ними воспринимаются зрением напрямую.

Рассмотрим наскальный рисунок. Он состоит из простых цветных пятен на стене пещеры. Зрение позволяет нам понять, что на рисунке изображены животные и люди на охоте. Мы с первого взгляда увидели всю структуру форм картины, и теперь наш мозг может решить, гармонична ли ее композиция.

Наскальный рисунок на плато Тассилин-Адджер на юго-востоке Алжира. Плато объявлено объектом всемирного наследия ЮНЕСКО, так как на нем было сделано множество ценных археологических находок.

Точно так же достаточно одного взгляда, чтобы оценить картину Яна ван Эйка «Портрет четы Арнольфини» — мозг автоматически получает информацию о цветах и может определить, кажется ли картина красивой.

Так же автоматически зрение воспринимает композицию фрески Рафаэля «Афинская школа» в Ватиканском дворце: персонажи картины, в числе которых можно увидеть Пифагора, Евклида, Птолемея и, разумеется, Платона и Аристотеля, рас положены симметричными группами. Мы мгновенно воспринимаем расположение персонажей под куполами, ограничивающими сцену, и глубину, созданную с помощью методов перспективы. Вся эта информация очень быстро передается органами зрения в мозг, и он может «решить», гармонично ли сочетание элементов композиции. Ничто не ускользает от нашего взора: ни пространство и свет, изображенные Веласкесом на картине «Менины», ни даже текстура мазков «Сеятеля» Ван Гога — здесь зрение словно заменяет тактильные ощущения.

«Портрет четы Арнольфини» — картина Яна ван Эйка, созданная в 1434 году, хранится в Лондонской национальной галерее.

«Афинская школа» — фреска, созданная Рафаэлем Санти в 1510–1511 годах для Ватиканского дворца.

Слева — «Менины», картина Веласкеса, написанная в 1656 году, сейчас хранится в музее Прадо. Справа — фрагмент картины «Сеятель», созданной Винсентом ван Гогом в 1888 году, в настоящее время хранится в частной коллекции.

Музыка

Похожие рассуждения будут справедливы для музыки и органов слуха. Здесь нужно рассмотреть последовательность музыкальных аккордов во времени, их кинетический характер. Философ Монро Бирдсли писал: «Музыка есть искусство, которое течет со временем: она колеблется, подпрыгивает, колышется, становится неспокойной, поднимается, запинается и беспрерывно движется». Эта временная упорядоченность музыки, которая отсутствует в живописи, также крайне важна в математике. Теорема, подобно симфонии, начинается, продолжается и заканчивается, и порядок расположения ее составных частей имеет огромное значение.

Последовательный характер музыки очень важен для ее восприятия: чтобы оценить эстетику мелодии, нужно обладать определенной звуковой памятью. При этом звуковая память человека не особенно развита по сравнению, например, с визуальной.

Как-то раз я услышал такую фразу: человек, слушающий квартет Брамса, подобен рыбе, смотрящей «Психоз» Хичкока. Наша кратковременная звуковая память не способна фиксировать сложные последовательности звуков, и еще меньше она подходит для распознавания подобных последовательностей с легким изменением ритма каждые несколько минут. Именно это чувствует рыба, которая смотрит на киноэкран: увидев эпизод фильма, уже спустя несколько минут или даже секунд она забывает его и не способна узнать персонажа, который на мгновение исчез с экрана. Мне кажется, что способность людей запоминать сложные мелодии также проявляется в распознавании абстрактных элементов грамотных математических рассуждений. Как следствие, ограниченные способности распознавания подобных шаблонов, которые столь часто встречаются в математике, всерьез мешают нам оценить их красоту.

Страницы


В нашей электронной онлайн библиотеке вы можете бесплатно и без регистрации прочитать «Том 27. Поэзия чисел. Прекрасное и математика» автора Дуран Антонио на телефоне, андроиде, айфоне, айпаде. Сейчас вы находитесь в разделе „Глава 2Почему оценить красоту математики непросто“ на странице 1. Приятного чтения.