Вы здесь

Teopeма Гёделя

Teopeма Гёделя

Теоремы Гёделя



7.1. Гёделевская нумерация


Гёдель прежде всего описал некоторое формализованное исчисление, средствами которого можно выразить все обычные арифметические понятия и установить известные арифметические соотношения.

Гёдель использовал несколько упрошенный вариант системы, описанной в Principia Mathematics. Но для его цели точно так же подходит любое исчисление, в котором можно построить систему натуральных чисел с определенными на ней арифметическими операциями.

Формулы этого исчисления строятся исходя из некоторого запаса элементарных символов, образующих алфавит системы. В этом исчислении, как обычно, выделено некоторое множество исходных формул (аксиом) и точно перечислены правила преобразования (правила вывода), посредством которых из аксиом выводятся теоремы.

Гёдель показал, что каждому элементарному символу, каждой формуле (т. е. цепочке элементарных символов) и каждому доказательству (конечной последовательности формул) можно однозначным образом приписать некоторый номер (натуральное число). Такой номер, служащий своего рода значком, ярлыком, указывающим на отмечаемый им объект — символ, формулу или доказательство — формальной системы, мы будем называть «гёделевским номером» этого символа, формулы или доказательства[13].

Элементарные символы, составляющие алфавит системы, бывают двух сортов: константы и переменные. Мы будем считать, что у нас есть ровно десять символов-констант, которым мы припишем в качестве гёделевских номеров числа от 1 до 10. Почти все эти символы читателю уже известны: «~» (сокращение для «не»), «˅» («или»), «ﬤ» («если…, то…»), «=» («равно»), «0» (цифровой знак, изображающий число «нуль»), а также три «знака препинания»: левая скобка «(», правая скобка «)» и запятая «,». Кроме того, нам понадобятся еще два символа: перевернутая буква «Ǝ» (читаемая как «существует» и называемая «квантором существования») и строчная латинская буква «s», обозначающая числовой оператор, сопоставляющий каждому натуральному числу непосредственно следующее за ним число. Пример: формулу «Ǝ x (x = s0)» можно прочесть как «существует такое x, что x непосредственно следует за числом 0». Выпишем все используемые нами символы-константы (под ними указаны соответствующие гёделевские номера):

~ ˅ ﬤ Ǝ = 0 s ( ) ,

1 2 3 4 5 6 7 8 9 10

Кроме элементарных символов-констант, в алфавит нашего исчисления входят еще переменные, причем переменные трех сортов: числовые переменные «x», «y», «z» и т. д. (вместо них можно подставлять «цифры» и составленные из них (и числовых переменных) «арифметические выражения», выражающие натуральные числа); пропозициональные переменные «p», «q», «r» и т. д. (вместо них можно подставлять «формулы», выражающие высказывания); и, наконец, предикатные переменные «P», «Q», «R» и т. д. (вместо них можно подставлять арифметические «предикаты», выражающие такие свойства и отношения, как «больше чем», «простое (число)» и т. п.). Переменным также сопоставляются гёделевские номера, причем делается это в соответствии со следующими соглашениями:

1) различным числовым переменным приписываются различные простые числа, большие 10;

2) различным пропозициональным переменным приписываются квадраты различных простых чисел, больших 10;

3) различным предикатным переменным приписываются кубы различных простых чисел, бОльших 10.

* Кавычки (добавленные при переводе) означают здесь, что подставить можно не само написанное в правом столбце слово, а его формальную запись на языке нашего исчисления. — Прим. перев.

Возьмем какую-нибудь формулу нашей системы, например

Ǝ x (x = sy)

(которую можно прочесть как «существует такое x, что x непосредственно следует за y» и которая выражает то обстоятельство, что для каждого числа есть непосредственно следующее за ним число). Выпишем под каждым из входящих в нее символов его (символа) гёделевский номер:

Ǝ x ( x = s у )

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Страницы


В нашей электронной онлайн библиотеке вы можете бесплатно и без регистрации прочитать «Teopeма Гёделя» автора Нагель Эрнст на телефоне, андроиде, айфоне, айпаде. Сейчас вы находитесь в разделе „7Теоремы Гёделя“ на странице 1. Приятного чтения.