Вы здесь

Пятьсот двадцать головоломок

Пятьсот двадцать головоломок

254. Построение пятиугольника. «Я собираюсь сшить одеяло из кусочков материи, имеющих форму пятиугольника, — сказала одна леди. — Как мне лучше вырезать из картона правильный пятиугольник со стороной 10 см? Разумеется, я могу начертить окружность и затем с помощью циркуля отметить на ней 5 равноотстоящих точек. Но если мне не известен точный размер окружности, у моего пятиугольника стороны всегда будут получаться либо немного больше, либо немного меньше 10 см».

Не могли бы вы подсказать леди простой и надежный способ, с помощью которого можно было бы построить нужный пятиугольник с первого раза?

255. С помощью одного циркуля. Можете ли вы построить 4 вершины квадрата с помощью лишь одного циркуля? У вас имеется только лист бумаги и циркуль. Прибегать к разного рода трюкам, вроде складывания бумаги, не разрешается.

256. Прямые и квадраты. Вот один простой вопрос. Чему равно наименьшее число прямых линий, с помощью которых можно построить ровно 100 квадратов? На помещенном здесь рисунке слева с помощью девяти прямых построено 20 квадратов (12 со стороной, равной АВ, 6 со стороной, равной АС, и 2 со стороной, равной AD). На том же рисунке справа прямых на одну больше, а число квадратов возросло до 17. Таким образом, важно не то, сколько всего прямых, а то, как они проведены. Помните, что требуется получить ровно 100 квадратов (не больше и не меньше).

257. Сад мистера Гриндла. Однажды за чашкой чая мистер Гриндл сказал:

— Мой сосед был так щедр, что пожертвовал для моего сада столько своей земли, сколько я смог огородить с помощью четырех прямых заборов длиной 70, 80, 90 и 100 м соответственно.

— Какую же наибольшую площадь ты смог огородить? — спросил мистера Гриндла приятель.

Быть может, читатель сумеет правильно ответить на этот вопрос. Дело в том, что площадь треугольника с тремя известными сторонами определяется однозначно, но в случае четырехугольника все обстоит совершенно иначе. Так, вполне очевидно, что площадь четырехугольника А больше площади четырехугольника В, хотя стороны в обоих случаях одинаковы.

258. Садовая ограда. Вот одна старая часто встречающаяся головоломка. Многим она кажется трудной, но на самом деле решить ее проще, чем представляется на первый взгляд.

У одного человека был прямоугольный сад со сторонами 55 и 40 м, и ему захотелось проложить в нем по диагонали дорожку шириной в 1 м, как показано на рисунке.

Чему равна площадь дорожки?

Обычно приводятся такие размеры сада, при которых получается лишь приближенный ответ. Однако я специально подобрал размеры, чтобы ответ был точный. Для большей наглядности ширина дорожки на рисунке изображена без соблюдения масштаба.

259. Садовая клумба. Вот очень простая маленькая головоломка.

У одного человека был треугольный газон, стороны которого пропорциональны сторонам треугольника, изображенного на рисунке. Человеку захотелось разбить на газоне предельно большую прямоугольную клумбу, на задев дерева.

Как ему следует поступить?

Эта головоломка поможет нам освоить простое правило, которое в некоторых случаях оказывается весьма полезным. Например, его с успехом можно приложить к задаче, в которой столяру требуется, не захватив сучка, вырезать из треугольной доски наибольшую прямоугольную крышку для стола.

260. Землемерная задача. В каждом деле есть свои маленькие хитрости, а в науке о числах их бесконечное множество. Почти в каждой профессии имеются полезные приемы, позволяющие быстро находить нужные ответы и очень помогающие тем, кто с ними знаком. Приведем пример. Один человек купил небольшое поле, карта которого в масштабе 1 : 10000, попавшая мне в руки, изображена на рисунке. Я попросил своего знакомого землемера сказать мне, какова площадь поля, однако землемер ответил, что этого нельзя сделать без дополнительных измерений — знать длину лишь одной из сторон недостаточно. Каково же было его удивление, когда я через несколько минут сообщил, чему равна площадь поля, располагая длиной только одной его стороны, равной 70 м.

Не могли бы вы сказать, как это можно сделать?

261. Изгородь. Вот задача, которая трудна в общем случае, однако в том виде, в каком я ее здесь привожу, решение ее не составит труда для искушенного человека.

Страницы


В нашей электронной онлайн библиотеке вы можете бесплатно и без регистрации прочитать «Пятьсот двадцать головоломок» автора Дьюдени Генри на телефоне, андроиде, айфоне, айпаде. Сейчас вы находитесь в разделе „Геометрические задачи“ на странице 1. Приятного чтения.