Вы здесь

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии

Конкуренты Евклида


На протяжении веков пятый постулат вызывал обильные комментарии и критику в трудах самых известных геометров. Многие из них были убеждены, что этот постулат можно доказать с помощью других постулатов, и сосредоточили свои усилия на поиске доказательства, чтобы, наконец, объявить его теоремой.

После многих столетий развития математических теорий никто так и не смог доказать ни сам постулат, ни ложность тех геометрий, которые этот постулат отвергают.

Последний греческий мастер

Список математиков, которые пытались доказать пятый постулат Евклида, содержит много самых знаменитых имен в истории науки. Результаты этих ученых открыли дорогу новым геометриям, и мы не должны забывать их новаторских работ в этой области.

Тем не менее, несмотря на усилия лучших математиков, все попытки были тщетны. Каждый, кто брался за решение этой задачи, получал результаты, эквивалентные пятому постулату, но строгое доказательство так и не было найдено. Одна из первых попыток была сделана Проклом в V в.

Прокл оставил ряд своих комментариев, например:

«Это положение должно быть совершенно изъято из числа постулатов, потому что это — теорема, вызывающая много сомнений, которые Птолемей пытался разрешить в одной из своих книг, и его доказательство потребовало сложных определений и теорем. Кроме того, обратное утверждение было доказано самим Евклидом в качестве теоремы. Утверждение, что «две прямые неизбежно пересекаются, будучи продленными достаточно далеко», представляется правдоподобным, но не необходимым. Таким образом, совершенно ясно, что должно быть найдено доказательство настоящей теоремы, а такое требование природе постулатов совершенно чуждо».

* * *

ПРОКЛ АЛЕКСАНДРИЙСКИЙ (410–485)

Греческий математик Прокл родился в Константинополе и умер в Афинах. Он был последним крупным языческим ученым. Из-за своего язычества он был изгнан из Афин на целый год. Он был выдающимся комментатором Евклида и Птолемея, а потому является важной фигурой древнегреческой геометрии.

* * *

Фактически греческий математик хотел показать, что только одна параллельная прямая m проходит через точку Р вне прямой l.

Прокл предположил, что, по крайней мере одна прямая, параллельная l, проходит через точку Р, и он обозначил ее буквой m. Затем он хотел доказать, что любая другая прямая, проходящая через Р и отличная от m, пересекает прямую l.

Таким образом было бы показано, что если существует параллельная прямая, проходящая через Р, то она должна быть единственной. Итак, Прокл провел через точку Р прямую n, отличную от m, и опустил из точки Р перпендикуляр на прямую l, обозначив его основание буквой Q.

Далее, если прямая n проходит через точки Р и Q, то n пересекает прямую l в точке Q. Но что если n не проходит через точки Р и Q? В этом случае на прямой n можно отметить точку Y и опустить из нее перпендикуляр на прямую m, обозначив его основание точкой Z.

На рисунке выше мы видим, что отрезок РY ограничен прямой m и отрезком YZ, а точка Y может двигаться вправо по прямой n.

Далее Прокл отмечает, что длина отрезка YZ увеличивается по мере продвижения вправо (и может стать бесконечно большой). Поскольку расстояние между прямыми m и l постоянно, то n обязательно пересечет l в некоторой точке. Таким образом, как думал Прокл, пятый постулат был доказан.

Обратите внимание: рассуждения греческого ученого опираются на то, что расстояние между прямыми m и l постоянно. Таким образом, единственным аргументом является то, что прямые m и l не пересекаются.

Кроме того, длина отрезка может увеличиваться бесконечно, но не превышать некоторой фиксированной величины. Фактически Прокл свел доказательство пятого постулата к доказательству того, что параллельные прямые находятся на постоянном расстоянии друг от друга, что эквивалентно аксиоме параллельности Плейфера.

Страницы


В нашей электронной онлайн библиотеке вы можете бесплатно и без регистрации прочитать «Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии» автора Гомес Жуан на телефоне, андроиде, айфоне, айпаде. Сейчас вы находитесь в разделе „Глава 3Конкуренты Евклида“ на странице 1. Приятного чтения.