Вы здесь

Мир математики. т 40. Математическая планета. Путешествие вокруг света

Мир математики. т 40. Математическая планета. Путешествие вокруг света

Как геометрия делает красивое прекрасным


Нельзя сказать, что использование геометрии само по себе делает вещи красивее. Но в названии этой главы мы хотим подчеркнуть, что во всех культурах высоко ценились качественно сделанные вещи, а качество во многих случаях достигалось именно благодаря математической точности. Именно в этом смысле Эрнст Гомбрих говорит о роли геометрии в искусстве в своей книге «Чувство порядка», посвященной декоративно-прикладному творчеству.

Действуйте геометрически

Аэропорты всего мира за несколько лет превратились в настоящие торговые центры. В них можно найти буквально все: киоски, аптеки, бары, рестораны, магазины часов, одежды, подарков и электроники. Пассажирам, ожидающим вылета, доступны самые разные товары.

Но магазинами дело не ограничивается: в некоторых аэропортах, в частности в сингапурском аэропорте Чанги, пассажиры могут посетить бесплатные выставки.

В одном из вестибюлей аэропорта были установлены панели экспозиции под названием «Go Geometric» («Действуйте геометрически»). В выставке подчеркивалась связь культуры и геометрии. Кроме того, посетителям предлагалось самим создать или воссоздать геометрические узоры, которые можно встретить в образцах архитектуры и декоративно-прикладного искусства народов Азии.

Выставка «Go Geometric» в сингапурском аэропорту Чанги.

На одном из стендов можно было напечатать на бумаге марку с особым узором — бесконечным узлом, одним из символов Будды. Этот узел так назван, потому что представляет собой линию, которую можно провести, не отрывая карандаша от бумаги. Обычно он используется в украшении самых разных предметов — так, его упрощенная версия украшает тарелку, изображенную на иллюстрации.

Стенд выставки в аэропорту Чанги и описи бесконечного узла на бумаге.

Почему этот узел называется бесконечным? Очевидно, потому, что он представляет собой циклическую линию. Если мы пройдем вдоль нее, начиная из любого места, то в конце концов вернемся в начальную точку. Эта линия непрерывная и замкнутая. Форма узла определяется сеткой, на которой он изображен, и расположением самой линии узла относительно сетки.

Две фигуры называются топологически эквивалентными, если одну из них можно получить из другой путем непрерывной деформации (без разрезов), и число отверстий в фигуре при этом не меняется. Так, топологически эквивалентны кольцо и рама картины. Аналогично, топологически эквивалентными являются бесконечный узел, изображенный выше, и следующая фигура. Кроме того, обе эти фигуры обладают осевой симметрией второго порядка (относительно поворота на 180°).

* * *

ТОПОЛОГИЯ

Топология — раздел математики, изучающий формы, но не размеры, то есть не длины, углы, площади или объемы. С точки зрения топологии все объекты мягкие и деформируемые. Если путем непрерывной деформации, то есть без разрезов и склеек, двум объектам можно придать одинаковую форму, такие объекты называются топологически эквивалентными. К примеру, все многоугольники топологически эквивалентны кругу. Это же можно сказать о многогранниках и сфере. Топологически эквивалентными также являются футболка и лист бумаги с четырьмя отверстиями. В топологии определяющим свойством фигуры является число ее отверстий. Кольцо топологически эквивалентно чашке, так как и кольцо, и чашка имеют одинаковое число отверстий, в отличие от стакана, в котором отверстий нет. Точно так же эквивалентными будут ложка и вилка, так как в них нет отверстий.

Цилиндр и кольцо топологически эквивалентны.

* * *

Цикл, обладающий осевой симметрией второго порядка, проходит через три вершины сетки на каждой стороне квадрата. Это же верно и в случае, когда на каждой стороне находится всего одна вершина.

Если число вершин сетки на каждой стороне квадрата четное, имеем другую разновидность цикла, с осевой симметрией четвертого порядка (относительно поворота на 90°).

За исключением случая, когда на каждой стороне располагается всего одна вершина, различные циклы такого типа (обладающие осевой симметрией четвертого порядка) можно определить для любого числа вершин на стороне квадрата, как четного, так и нечетного. Для сетки размером 4 x 4 это будут две вершины, для сетки размером 7 x 7 — три.

Если число вершин сетки на каждой стороне квадрата четное (сетка состоит из нечетного числа клеток), то не существует цикла, проходящего через все вершины и подобного исходному узлу.

Страницы


В нашей электронной онлайн библиотеке вы можете бесплатно и без регистрации прочитать «Мир математики. т 40. Математическая планета. Путешествие вокруг света» автора Альберти Микель на телефоне, андроиде, айфоне, айпаде. Сейчас вы находитесь в разделе „Глава 4Как геометрия делает красивое прекрасным“ на странице 1. Приятного чтения.