Вы здесь

Мир математики. т 40. Математическая планета. Путешествие вокруг света

Мир математики. т 40. Математическая планета. Путешествие вокруг света

Как считать быстрее и лучше


Письменный счет и вычисления

Что бы вы подумали, если бы увидели на тротуаре бумажку с такими надписями?

Это свободная интерпретация шумерской таблички возрастом более 4600 лет, найденной в городище Шуруппак на территории Ирака. Как отмечает Джордж Ифра (Марракеш, 1947), эта табличка представляет собой древнейшую запись деления чисел. Математик и историк Джордж Ифра — автор объемных и очень подробных трудов о системах счисления во всем мире, созданных задолго до появления математической науки.

В табличке идет речь о разделе ячменя между несколькими людьми. В левом столбце указано исходное количество ячменя, которое нужно разделить: один амбар и семь сил (один амбар равнялся 1152 000 сил). В правом столбце приведены необходимые расчеты. Смысл текста на табличке таков: после того как амбар ячменя был разделен между несколькими людьми, каждому досталось по 7 сил. Всего было 164571 человек, 3 силы оказались лишними.

Числа на табличке записаны при помощи геометрических фигур. Маленький конус обозначал единицу, круг — 10 единиц, большой конус — 60 единиц, большой конус с отверстием — 600, большой круг — 3600, большой круг с отверстием — 36 000 единиц.

Делимое 1152000 раскладывается на степени 60 следующим образом:

1152 000 = 5·603 + 2·10·602.

Но вместо того, чтобы записать его в таком виде, автор таблички, который не умел представлять большие числа, применил самое большое число, известное в ту эпоху, то есть 36000. Если мы хотим записать число 1152000 при помощи кругов с отверстиями, нам потребуются 32 круга:

1152 000 = 32·36 000.

Разделив эти 32 круга на 7 частей, получим, что в каждой части будет по 4 круга и еще 4 круга окажутся лишними. Четыре круга, доставшихся каждому человеку, составляют частное и записаны в верхней правой части таблички. Четыре оставшихся круга представляют собой остаток от первого деления. Их нужно снова разделить на 7 частей. Так как остаток равен 4·36 000 сил, получим:

4·36 000 = 144 000 = 40·3600,

то есть 40 больших кругов без отверстий. Разделим их на группы по 7 и получим, что частное — 5 кругов, остаток — тоже 5 кругов. Оставшиеся круги, обозначающие 5·3600 единиц, делятся на большие конусы с отверстиями по 600 единиц:

5·3600 = 18 000 = 30·600.

Имеем 30 больших конусов с отверстиями, которые нужно разделить на семь частей. Частное равно 4, остаток — 2. Таким образом, остались 2 больших конуса с отверстиями, то есть 2·600 = 1200 единиц, которые снова нужно разделить на 7 частей. Для этого используем следующую единицу измерения — конус без отверстий, обозначающий 60 единиц:

1200 = 20·60.

Эти 20 конусов, в свою очередь, снова делятся на 7. Результат деления равен 2, остаток — 6. Таким образом, лишними оказались 6 * 60 = 360 единиц. Они обозначаются 36 шарами по 10 единиц каждый:

360 = 36·10.

* * *

ВЫЧИСЛЕНИЯ ШУМЕРОВ

Страницы


В нашей электронной онлайн библиотеке вы можете бесплатно и без регистрации прочитать «Мир математики. т 40. Математическая планета. Путешествие вокруг света» автора Альберти Микель на телефоне, андроиде, айфоне, айпаде. Сейчас вы находитесь в разделе „Глава 2Как считать быстрее и лучше“ на странице 1. Приятного чтения.