Вы здесь

Энергия жизни. От искры до фотосинтеза

Энергия жизни. От искры до фотосинтеза


Глава 12.

СТИМУЛЯЦИЯ БЕЗ ПРИЛОЖЕНИЯ ЭНЕРГИИ


Остановимся на мгновение и подведем промежуточные итоги. Мы начали с поисков различий между живыми существами и неживыми предметами и перешли от них к термодинамике тепловых машин.

Затем мы пришли к выводу, что живые существа тепловыми машинами не являются, но при этом вполне вероятно, что энергию они получают в результате процесса, сходного с горением. От этого повествование закономерно перешло к химической энергии и к тому, что она представляет собой с точки зрения законов термодинамики. Это соображение, в свою очередь, вынудило нас объяснить, почему именно реакции типа задействованных при горении и предполагаемых в участии в процессах жизнедеятельности называются в терминах термодинамики «спонтанными», внешне таковыми не являясь.

Таким образом, мы перешли к предмету обсуждения предыдущей главы — энергии активации, необходимой для того, чтобы «запустить» спонтанную реакцию.

Так чем же теперь это может нам помочь в нашей основной задаче — исследовании природы живой материи? Предположим, что в организме человека происходят такие же реакции, как и при горении. Соответственно они должны обладать энергией активации, которую организм должен предоставить прежде, чем эти реакции начнут спонтанно протекать, снабжая при этом, в свою очередь, организм энергией, необходимой для его функционирования. И кажется, что все описанное в предыдущей главе к живой ткани никоим образом относиться не может.

Я описал два способа, которыми реагенты могут получить энергию активации, — с помощью тепла и с помощью света, но в живом организме явно не используется ни то ни другое. Температура живой ткани практически никогда не поднимается выше 37 °С, чего явно недостаточно для запуска реакций, сходных с горением. То же самое со световым излучением — живая ткань в принципе может быть источником света (примером тому служат светлячки), но это никогда не бывает излучение с высоким содержанием энергии, достаточным для активации химических процессов. Так как же решают живые организмы задачу предоставления энергии активации?

Может быть, перед нами наконец-то пример неподчинения живой материи законам термодинамики? Может быть, вот он наконец-то, тот четкий критерий, что позволит нам провести границу между живой и неживой материей?

Перед тем как перейти к непосредственному ответу на вопрос, давайте посмотрим, существуют ли в мире неживой природы явления, в которых спонтанная реакция запускается без поступления энергии активации, необходимой в большинстве случаев. Ведь если они существуют, то и в живой ткани вполне может происходить нечто подобное.

Первый значительный пример такого рода был обнаружен в связи с производством серной кислоты.

Серная кислота, как и ряд других сильнодействующих кислот, была открыта в Средние века, став одним из очень важных, хотя и недооцененных, продуктов алхимических опытов. Алхимики слишком концентрировались на поиске рецептов производства золота и слишком мало внимания обращали на действительно важные результаты своих исследований.

Серная кислота действует во много раз сильнее, чем самая сильнодействующая кислота из известных древним (уксусная кислота виноградного происхождения). Она вступает в ряд химических реакций, которые более слабые кислоты или не могут повторить вообще, или повторяют гораздо медленнее. Таким образом, сильнодействующие кислоты в целом и серная кислота в частности явили собой очень действенный химический инструмент, как для исследовательского, так и для промышленного применения. Даже сегодня серная кислота является самым используемым в химической промышленности веществом, если, конечно, не считать повсеместно присутствующих воздуха и воды, да еще, быть может, соли. Ежегодно изготавливается около пятнадцати миллионов тонн серной кислоты, и иногда даже считается, что масштаб индустриализации страны можно определить по количеству потребляемой ею серной кислоты.

Понятно, что важное значение приобрела разработка технологий дешевого и массового производства серной кислоты. На заре современности ее производство было сложным и дорогим процессом с ограниченным объемом.

Причиной тому были не трудности с добычей исходного сырья. Им служит сера (S) — вещество известное еще в древности, широко распространенное и веками добываемое в достаточном количестве и сравнительно легко, например, в Сицилии.

Сера хорошо горит, вступая в соединение с кислородом и образовывая при этом удушливый газ, сернистый ангидрид (SO2). Именно этот газ и дает знаменитый «запах серы», а не сама сера, которая запаха как раз не имеет.

Сернистый ангидрид растворим в воде, соединяясь затем с молекулой воды в «сернистую кислоту» — H2SO3.

S + O2 → SO2,SO2+H2O → H2SO3.

Действие сернистой кислоты имеет лишь умеренную силу, и к тому же она не очень стабильна. Это не то же самое, что необходимая нам серная кислота, имеющая в своем составе на один атом кислорода больше — H2SO4.

И вот самое сложное — это именно добиться присоединения этого самого последнего атома. Точнее, сернистый ангидрит может и дальше соединяться с кислородом, образовывая при этом серный ангидрид (SO3), а он уже при растворении в воде и даст вожделенную серную кислоту:

2SO2 + O2 → 2SO3,SO3 + Н2О → H2SO4.

На бумаге все выглядит гладко, но проблема состоит в том, что реакция соединения сернистого ангидрида с кислородом, хоть и приводит к снижению уровня свободной энергии, а значит — является спонтанной, вместе с тем требует столь высокой энергии активации, что путем прямого соединения сернистого ангидрида с кислородом удается получить очень мало серного ангидрида. Поэтому на протяжении всего XVII и начала XVIII века серную кислоту производили лишь по чуть-чуть и использовали крайне редко. На получение двух фунтов серной кислоты уходила неделя тяжкого труда.

Затем, в 40-х годах XVIII века, один из производителей серной кислоты, Джошуа Уорд, вдруг обнаружил, что при сжигании стандартной упаковки серы удается произвести гораздо больше серной кислоты, если примешать к ней селитру (азотнокислый натрий). Выяснилось ли это случайно, или изначально планировалось подмешать в серу селитры, чтобы она быстрее сгорала, на манер пороха (который состоит, как известно, из серы, селитры и порошкового угля), я не знаю. Так или иначе, Уорд запатентовал свою технологию, и стоимость производства серной кислоты резко упала.

Страницы


В нашей электронной онлайн библиотеке вы можете бесплатно и без регистрации прочитать «Энергия жизни. От искры до фотосинтеза» автора Азимов Айзек на телефоне, андроиде, айфоне, айпаде. Сейчас вы находитесь в разделе „Часть первая.ЭНЕРГИЯ“ на странице 45. Приятного чтения.