Вы здесь

Превращение элементов

Превращение элементов

Химик «без знания физики подобен человеку, который всего искать должен ощупом. И сии две науки так созданы между собой, что одна без другой в совершенстве быть не могут».

Это слова великого русского ученого М.В.Ломоносова.

Химики нашли общий язык с физиками, по выражению известного современного учёного и писателя Айзека Азимова, ещё с первых представлений о существовании атомов вещества, т. е. начиная с Левкиппа и Демокрита. Но химия шла своим путём, физика — своим, их пути пересекались очень часто, и, когда это случалось, рождались новые идеи и открытия.

Химический конгресс в Карлсруэ был столь плодотворен именно потому, что химики согласились опереться на физическую теорию Авогадро.

Неоценимую помощь химическим исследованиям дал физический метод спектрального анализа.

Физические измерения теплоёмкости во многом помогли химикам в установлении атомных весов.

Химию и физику соединил в своих работах Фарадей. Таких примеров можно приводить очень много. Взаимопроникновение этих наук с течением времени всё увеличивалось, и это способствовало исключительно быстрому развитию представлений о веществе.

В 1803 г. на полках книжных лавок Петербурга появился труд профессора физики Медико-хирургической академии В.В.Петрова «Известия о гальвани-вольтовских опытах». Несмотря на то что содержание книги было чисто научным, её распространили в предельно короткие сроки. Историки науки уже в XX столетии могли с сожалением отметить, сколь несправедливо забыты заслуги замечательного русского учёного, предвосхитившего многие открытия, признанные потом эпохальными. Среди таких открытий были и электрическая дуга, и различные формы газового разряда. Как сообщал В.В.Петров, наблюдая «светоносные» явления в воздухе, он заинтересовался вопросом: «…может ли свет, которым часто сопровождается течение гальвани-вольтовской жидкости, оказываться в безвоздушном месте?»

Что с того, что на заре электротехники электрический ток понимался как «течение жидкости»? Важно, что и такие представления не помешали поставить замечательные опыты. Петров наблюдал, как мы сказали бы сейчас, электрический разряд в вакууме. Откачав воздух под стеклянным колпаком до 7-10 миллиметров ртутного столба, он увидел, как между электродами возникло «светоносное пламя… а иголка (один из электродов. — Б.К.) по всей длине оставалась раскалённой». Внимательно изучив это явление, Петров установил, что разряд «тем сильнее становился, чем чище был вытягиваемый воздух из колокола». Спустя три десятка лет, ничего не зная об опытах Петрова, занялся изучением тех же вопросов Фарадей и пришёл к тем же выводам, что и русский академик: «Разрежение воздуха удивительно благоприятствует явлениям светящегося разряда».

Пропуская электрический ток через стеклянную трубку, в которую были вмонтированы электроды, Фарадей увидел, что при низком давлении у анода появляется фиолетовое свечение; светился и катод, но промежуток между ними оставался тёмным. Этот промежуток получил у других исследователей наименование «фарадеевого пространства».

Дальнейшему углублению в суть явления мешало отсутствие надлежащей технической базы. В частности, существующие в то время поршневые насосы не позволяли достигать достаточно высокой степени разрежения. Но это были временные трудности.

В 1856 г. боннский профессор Ю.Плюккер заказал небольшую стеклянную трубку для разреженных газов известному тогда стеклодуву Гейсслеру. Включив трубку в электрическую цепь, он, как и другие до него, наблюдал свечение и отклонение стрелки гальванометра. Но Гейсслер сконструировал и ртутный насос, с помощью которого можно было достигать в трубке значительно большего вакуума, чем ранее. Работая с трубкой Гейсслера последней конструкции, Плюккер увидел в ней уже не бледное свечение, а светящийся столб, который заполнил всё её пространство.

Что же так ярко и мощно светилось в трубке? Чтобы ответить на этот вопрос, учёные заполняли трубки разными газами и получали свечение различной окраски.

Предприимчивый стеклодув, заваленный заказами, расширил свою мастерскую и занялся производством трубок, которые приобрели широкую популярность под названием гейсслеровых. Огни цветной рекламы в современном городе — прямые потомки этих трубок. Явление очень красивое, но для тех времён совершенно необъяснимое.

Исследования разряда в разреженном газе предложили немецкие физики В.Гитторф (ученик Плюккера) и Е.Гольдштейн, англичанин К.Варлей и ряд других учёных. Больше всего ясности внёс, пожалуй, известный уже нам физик и химик Крукс.

В 1874 г. в Шеффилдском университете Крукс выступил с докладом на тему «Лучистая материя, или Четвёртое состояние вещества». Он продемонстрировал слушателям свечение в газоразрядной трубке, чем, надо сказать прямо, сначала разочаровал аудиторию, ибо всё это было ей уже известно. Однако со стороны Крукса такое начало было лишь подготовительной операцией к эффекту. Он по ходу опыта откачал воздух в трубке до одной тысячной атмосферного давления, усилил напряжение — и всё пространство ярко осветилось. Исследователь этим не ограничился: насос продолжал работать, откачивая остатки воздуха из трубки. И вдруг огненный столб погас, и лишь на стекле против катода осталось зеленоватое мерцающее пятно. Слушатели снова не были удовлетворены, ибо фосфоресценцию стекла при демонстрации эффекта в катодных трубках они наблюдали и ранее. Крукс это предвидел и, обращаясь к присутствующим, спросил примерно так: вы полагаете, что зеленоватое пятно — всего лишь остаточная фосфоресценция стекла? Никакого иного ответа, кроме утвердительного да, Крукс не ждал, естественно. И тогда он подключил к источнику тока такую же трубку, но с укреплённым внутри неё крестом, между катодом и противоположной стенкой трубки. Из трубки также откачали воздух, также погасло свечение и также осталось зеленоватое пятно на стекле, но на нём чётко вырисовался силуэт креста. Аудитория ахнула: было яснее ясного, что крест осветили какие-то лучи! Осветили, оставаясь невидимыми и распространяясь, как обычно, прямолинейно.

Успех опыта был потрясающе нагляден. Крукс подробно информировал слушателей о своих работах и высказал предположение лишь в конце своего доклада: от атомов отрываются частицы, они и есть вот эти невидимые лучи (Крукс назвал их катодными лучами). Можно представить, как было воспринято такое объяснение, когда и в химии, и в физике уже господствующим стало представление о неделимости атома. На голову Крукса посыпалось столько обвинений в научной ереси, ехидных замечаний, гневных выкриков, сожалений о том, что признанный учёный прельстился славой магов и впал в шарлатанство, — что всего трудно и перечесть.

Докладчику, столь блестяще продемонстрировавшему эффект креста, не дали даже продолжать объяснение. Полемика из зала, где Крукс продемонстрировал свой «шарлатанский» опыт, выплеснулась на страницы научных журналов.

Дело дошло до того, что Крукса публично обозвали сумасшедшим, и сделал это не кто иной, как знаменитый Г.Герц, блестящий учёный, которому человечество обязано открытием радиоволн.

Страницы


В нашей электронной онлайн библиотеке вы можете бесплатно и без регистрации прочитать «Превращение элементов» автора Казаков Борис на телефоне, андроиде, айфоне, айпаде. Сейчас вы находитесь в разделе „Приступ лучевой лихорадки“ на странице 1. Приятного чтения.