Вы здесь

Многоликий солитон

Многоликий солитон

При этом aгctg α пробегает значения от π/2 до 0, а φ меняется от -π до +π. Таким образом, написанное решение соответствует сепаратрисе, идущей из точки -π в точку +π.

Вспоминая, что φ удовлетворяет уравнению (4.6), после несложных тригонометрических преобразований можно найти, что

Здесь мы ввели в употребление так называемый гиперболический косинус

ch(ω0t) = 1/2(eω0t + е-ω0t),

часто встречающийся в теории солитонов. (Геометрическое определение этой и других гиперболических функций можно найти в Приложении.) Легко построить график этой функции (рис. 4.13).

Теперь легко получить графики φ(t) и φ'(t), описывающие особое движение маятника (рис. 4.14). Эти две замечательные и простые функции стоит как следует изучить и запомнить.


Движения маятника и «ручной» солитон


Качественный характер изученных нами движений маятника полезно изучить на простых опытах. Проще всего сделать это с помощью обычного велосипедного колеса. Перевернув велосипед, можно сделать из переднего колеса неплохой маятник, способный совершать колебательные и вращательные движения. Для этого прикрепим на ободе кусочек пластилина или какой-либо иной грузик. Если колесо не сбалансировано, лучше его сначала сбалансировать, так чтобы оно могло покоиться в любом положении. Внешняя сила, действующая на колесо, определяется только дополнительным грузиком, а в движении участвует вся его масса.

Чтобы оценить период движения колеса, приближенно заменим его однородным тонким обручем с радиусом, примерно равным расстоянию l от центра до внутренней части обода, и с массой, примерно равной массе всего колеса М. Приложенная сила равна -mg sin φ, а ее момент равен mgl sin φ, где m — масса дополнительного грузика, а φ — угол отклонения его от вертикали, отсчитываемый точно так же, как и для обычного маятника. Мысленно разделим обруч на n одинаковых маленьких частей. Если к каждой приложить силу -(1/n) mg sin φ, направленную по касательной к обручу, то приложенный полный момент силы равен -mgl sin φ, так что такое «разделение» внешней силы допустимо. Для каждой маленькой части легко написать уравнение движения

поскольку все части движутся как целое и их ускорения одинаковы. Таким образом, мы получили уравнение, совпадающее с уравнением движения обычного маятника φ" = -ω02 sin φ, но теперь ω02 = mg/Ml. Этот вывод не зависит от сделанных приближений, приближенным получилось лишь выражение для ω02 (в точной формуле вместо Ml надо подставить I/l, где I — момент инерции колеса; для обруча I = Ml2).

На этом простом приборе можно изучить все движения, которые были рассмотрены выше. Нужно только помнить, что трение приводит к затуханию колебаний, закон сохранения энергии становится приближенным и фазовый портрет маятника при наличии трения существенно изменяется (попробуйте показать, что для линейного маятника с трением окружности на фазовой плоскости переходят в спирали, накручивающиеся на точку φ = 0, φ' = 0).

На велосипедном колесе легко установить изохронность малых и неизохронность больших колебаний. Нетрудно также найти зависимость периода колебаний от амплитуды и установить качественный характер любых движений.

Однако построить экспериментальные графики движений не очень просто. Самый удобный способ — сделать киносъемку движений колеса, но это уже достаточно дорогостоящий опыт. Замечательно, что зависимость угла от времени для самых разных движений можно определить на опыте с помощью очень простой системы, которая, на первый взгляд, не имеет ничего общего с маятником.

Возьмем тонкую и достаточно длинную стальную проволочку. Она должна легко гнуться без заметной остаточной деформации. Если ее положить на стол и слегка сжать на концах, она примет форму полусинусоиды, как указано в верхней части рис. 4.15.

Проведем касательные к получившейся кривой и будем отсчитывать угол φ, как указано на рисунке. Длину дуги s на кривой будем отсчитывать от точки О, причем слева s  0, а справа s 0. Если на проволочке сделать петельку, как указано в нижней части рис. 4.15, то угол будет принимать значения от -π до +π, если считать проволочку бесконечно длинной. При этом зависимость φ от s описывается формулой (4.9), в которой вместо t надо подставить s, а ω0 определяется силой F, действующей на проволочку. Если проволочка бесконечно длинная, то петелька может располагаться в любом месте, она может свободно перемещаться вдоль проволочки. Эта петелька и есть простейшая модель солитона. Назовем этот солитон «ручным».

С движением маятника связаны любые формы изгиба проволочки. Каждой зависимости φ(s) от s можно поставить в соответствие некоторое движение маятника. Эта замечательная аналогия называется аналогией Кирхгофа в честь открывшего ее знаменитого немецкого физика Густава Кирхгофа (1824—1887) *). На самом деле он нашел гораздо более широкую аналогию между состояниями деформированных упругих тел и движениями твердого тела. К сожалению, о ней сегодня совершенно незаслуженно забыли. Мы немного поговорим о ней после того, как познакомимся с солитоном Френкеля.

*) Формы изгиба упругой проволочки первым изучил Леонард Эйлер. Их называют «эластиками Эйлера».


Заключительные замечания


Метод необходим для отыскания истины.

Р. Декарт

Мы заканчиваем самую трудную главу в этой книге, главное содержание которой — основные идеи теории нелинейных колебаний, изложенные на простейших, но не тривиальных примерах. Читателю, желающему понять, как устроены солитоны, необходимо ясно представить себе линейные и нелинейные колебания маятника. Особенно хорошо нужно понять энергетические соотношения и движения, фазовые траектории которых сепаратрисы (формулы (4.9), (4.10) и рис. 4.14). Эти решения позволят нам понять с помощью простых аналогий очень важные солитоны. Один из примеров — ручной солитон, который связан с асимптотическим движением маятника аналогией Кирхгофа. 

Страницы


В нашей электронной онлайн библиотеке вы можете бесплатно и без регистрации прочитать «Многоликий солитон» автора Филиппов Александр на телефоне, андроиде, айфоне, айпаде. Сейчас вы находитесь в разделе „ЧАСТЬ 2 НЕЛИНЕЙНЫЕ КОЛЕБАНИЯ И ВОЛНЫ“ на странице 8. Приятного чтения.