Вы здесь

Квант. Эйнштейн, Бор и великий спор о природе реальности

Квант. Эйнштейн, Бор и великий спор о природе реальности

В аргументации Эйнштейна должен был найтись изъян. Чтобы его отыскать, Бор решил проанализировать, какие устройства использовались в этом эксперименте. Он сделал небольшой чертеж. Бор сосредоточился на первом экране, понимая, что возможность контролировать и измерять импульс, переданный от частицы экрану, зависит от того, может ли экран двигаться вертикально. Именно возможность наблюдать, сдвинулся экран вверх или вниз после прохождения частицы через щель, позволяет определить, прошла частица через верхнюю или через нижнюю щель во втором экране после того, как она ударилась о фотопластинку.

Эйнштейн, несмотря на годы, проведенные в патентном бюро, не учел деталей. А Бор знал, что квантовый дьявол именно в них. Он заменил первый экран другим, подвешенным на двух пружинах, закрепленных на неподвижной рамке. Это позволяло измерить импульс, переданный экрану при прохождении частицы через щель. Измерительное устройство было простым: стрелка, закрепленная на рамке, и шкала, нанесенная непосредственно на экран. Несмотря на свою простоту, прибор был достаточно чувствительным, чтобы в мысленном эксперименте можно было наблюдать взаимодействие одной частицы и экрана.

Рис. 16. Схема Бора с подвижным первым экраном.

Бор утверждал, что если экран уже двигался с некоторой неизвестной скоростью, превышающей скорость, обязанную взаимодействию с проходящей через щель частицей, то выяснить, чему равен переданный импульс, невозможно. Следовательно, нельзя узнать и траекторию частицы. С другой стороны, если можно проконтролировать и измерить импульс, переданный частицей экрану, в соответствии с принципом неопределенности одновременно имеется неопределенность в положении экрана и щели. Каким бы точным ни было измерение импульса экрана в вертикальном направлении, оно в меру соотношения неопределенности строго связано с соответствующей неточностью измерения вертикального смещения.

Кроме того, по мнению Бора, неопределенность положения первого экрана разрушает интерференционную картину. Пусть точка D на фотопластинке — точка деструктивной интерференции, то есть она попадает в темную полосу интерференционной картины. Вертикальное смещение первого экрана приведет к изменению длины двух путей: ABD и ACD {рис. 15). Если новые пути отличаются на половину длины волны, в том же месте будет уже не деструктивная, а конструктивная интерференция: точка D попадет в светлую полосу.

Чтобы учесть неопределенность вертикального смещения первого экрана S1, требуется “усреднение” по всем его возможным положениям. Это приведет к интерференции где-то посередине, между местами максимумов полностью конструктивной и полностью деструктивной интерференции, и в результате к размыванию интерференционной картины на фотопластинке. Бор утверждал, что, контролируя передачу импульса от частицы первому экрану, можно проследить траекторию частицы, проходящей через щель во втором экране, но это разрушит интерференционную картину. Он пришел к заключению, что “предложенный [Эйнштейном] контроль переданного импульса будет включать в себя свободу в определении положения диафрагмы [S1], что исключает возникновение интересующего явления интерференции”45. Бор отстоял не только принцип неопределенности, но и утверждение, что волновой и корпускулярный аспекты микрофизического объекта не могут проявляться в эксперименте одновременно, будь он мысленный или нет.

Построенное Бором опровержение утверждений Эйнштейна основывалось на предположении, что достаточно точное измерение импульса, переданного экрану S1, которое позволило бы сделать заключение о дальнейшем направлении движения частицы, приводит к неопределенности в определении положения самого экрана. Это связано с тем, объяснял Бор, что потребуется прочесть показания шкалы, нанесенной на S1 . Значит, шкалу придется осветить. А это значит, что от экрана должны отражаться фотоны, что приводит к бесконтрольной передаче импульса. Следовательно, точно измерить импульс, переданный экрану при прохождении частицы через щель, не удастся. Единственный способ исключить влияние фотонов — не освещать шкалу. Но тогда нельзя будет узнать ее показания. Бору пришлось воспользоваться тем же представлением о “возмущении”, за которое он прежде критиковал Гейзенберга, когда тот использовал его для объяснения источника неопределенности в мысленном эксперименте с микроскопом.

Было еще одно любопытное явление, связанное с экспериментом, в котором использовался экран с двумя щелями. Пусть одна из щелей имеет заслонку. Если закрыть эту заслонку, интерференционная картина пропадает. Интерференция получается только тогда, когда обе щели одновременно открыты. Как это возможно? Частица может пройти только через одну щель. Но откуда она “знает”, что вторая щель закрыта?

У Бора был ответ. Нет такой вещи, как частица со строго определенной траекторией. Именно отсутствие определенной траектории стоит за появлением интерференционной картины, даже если она создается не волнами, а частицами, проходящими по одной через экран с двумя щелями. Именно такая квантовая размытость позволяет частице “испытывать” различные возможные пути, так что она “знает”, закрыта или открыта одна из щелей. На путь, по которому частица будет двигаться, оказывает влияние, открыта щель или нет.

Если детектор поместить перед двумя щелями так, чтобы можно было подсмотреть, через какую из них частица собирается пройти, создается впечатление, что вторую щель можно закрыть и это не окажет влияния на траекторию частицы. Когда впоследствии такой эксперимент с “отложенным выбором” поставили, то вместо интерференционной картины получили увеличенное изображение щели. При попытке измерить положение частицы, чтобы установить, через какую из щелей она пройдет, ее исходное направление движения возмущается и интерференционная картина не реализуется.

Рис. 17. Эксперимент с двумя щелями: а) открыты обе щели; б) одна щель закрыта.

Бор говорил, что физики должны выбирать: они могут “отслеживать траекторию частицы либо наблюдать интерференционные эффекты”46. Если одна из щелей на экране S2 закрыта, физики знают, через какой из затворов пройдет частица, прежде чем ударится о фотопластинку. Но при этом интерференционной картины не будет. Бор утверждал, что именно возможность выбора позволяет “избавиться от парадоксальной необходимости сделать вывод, что поведение электрона или фотона зависит от наличия щели в диафрагме [S2], через которую, как можно доказать, он не проходит”47.

Для Бора эксперимент с двумя щелями был типичным примером проявления свойства дополнительности при взаимоисключающих экспериментальных условиях48. Он утверждал, что свет — квантово-механическая реальность, не являющаяся ни частицей, ни волной. Он и то, и другое. В каждом случае ответ природы на вопрос, частица это или волна, зависит от того, каков сам вопрос: от того, какой эксперимент ставится. Если целью эксперимента является определение, через какую из щелей на экране S2 пройдет фотон, природа на этот вопрос ответит “частица”, и поэтому интерференционной картины не будет. Именно потерю независящей от наблюдателя объективной реальности, а не вероятность (“Бога, играющего в кости”) считал недопустимой Эйнштейн. Именно поэтому квантовая механика не могла быть фундаментальной теорией природы, на чем настаивал Бор.

“Озабоченность Эйнштейна и его критика были для всех нас главным стимулом еще раз проверить все, что связано с описанием атомных явлений”, — вспоминал Бор49. Суть разногласий, подчеркивал он, сводилась главным образом к “различию между исследуемым объектом и измерительными приборами, с помощью которых на языке классической физики надо определить условия, при которых проявляется данное явление”50. Согласно копенгагенской интерпретации, измерительные приборы сложным образом связаны с исследуемым объектом, и разделить их невозможно.

Измерительные приборы подчиняются законам классической физики, а такой микрофизический объект, как электрон, — законам квантовой механики. Тем не менее перед вызовом, брошенным Эйнштейном, Бору пришлось отступить. Он применил принцип неопределенности к макроскопическому объекту — первому экрану S1. В этот раз Бор, которому не удалось провести четкую “разделительную линию” между классическим и квантовым мирами, своевольно перевел элемент повседневного мира больших размеров в царство квантов. Это был не последний сомнительный ход Бора за время игры в квантовые “шахматы” с Эйнштейном. Уж очень высоки были ставки.

Во время заключительной дискуссии Эйнштейн взял слово только однажды, когда и задал свой вопрос. Позднее де Бройль вспоминал, что Эйнштейн “практически ничего не сказал, только сделал небольшое замечание относительно вероятностной интерпретации”, а затем “снова погрузился в молчание”51. Однако поскольку все участники конгресса остановились в “Метрополе”, жаркие споры начались именно здесь, в элегантной столовой в стиле ар-деко, а не в конференц-зале Института физиологии. Бор и Эйнштейн, по словам Гейзенберга, были в самой гуще событий52.

Удивительно, что де Бройль, хотя и был аристократом, говорил только по-французски. Он, конечно, видел Бора и Эйнштейна, с головой погруженных в разговор, и Гейзенберга с Паули, внимательно их слушавших. Они говорили по-немецки, и де Бройль не понял, что присутствует при событии, которое Гейзенберг назвал “дуэлью”53. Признанный мастер мысленных экспериментов, Эйнштейн явился к завтраку вооруженный. Он опять был готов бросить вызов принципу неопределенности, а вместе с ним и хваленой непротиворечивости копенгагенской интерпретации.

Разговор начался за кофе с круассанами. Бор и Эйнштейн продолжили беседу по пути в Институт физиологии. Как всегда, Гейзенберг, Паули и Эренфест замыкали шествие. Перед утренней сессией оппоненты зондировали почву и уясняли смысл новых аргументов друг друга. “Во время заседания, а особенно в перерывах, молодежь, главным образом Паули и я, пыталась проанализировать эксперимент Эйнштейна, — рассказывал позднее Гейзенберг. — За завтраком обсуждение вопроса с Бором и другими ‘копенгагенцами’ продолжилось”54. К концу дня совместными усилиями удалось сформулировать контрдоказательство. Во время обеда в “Метрополе” Бор объяснил Эйнштейну, почему его последний мысленный эксперимент не приводит к нарушению ограничений, накладываемых принципом неопределенности. Всякий раз, когда Эйнштейну не удавалось обнаружить изъян в доводах “копенгагенцев”, они, по словам Гейзенберга, знали, что “в глубине души он оставался при своем мнении”55.

Страницы


В нашей электронной онлайн библиотеке вы можете бесплатно и без регистрации прочитать «Квант. Эйнштейн, Бор и великий спор о природе реальности» автора Кумар Манжит на телефоне, андроиде, айфоне, айпаде. Сейчас вы находитесь в разделе „ЧАСТЬ III. Битва за реальность“ на странице 4. Приятного чтения.