Вы здесь

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Ахилл: Обоюдоострый результат г-жи Черепахи прорубил дверь в область акусто-поиска.

Муравьед: Что такое акусто-поиск?

Ахилл: Название говорит само за себя: это поиск и извлечение акустической информации из сложных источников. Например, типичная задача акусто-поиска — восстановить звук, произведенный упавшим в воду камнем, по форме расходящихся по воде кругов.

Краб: Но это невозможно!

Ахилл: Почему же? Это весьма похоже на то, что делает наш мозг, когда он восстанавливает звук, произведенный голосовыми связками другого человека, по колебаниям, переданным барабанной перепонкой далее по лабиринту ушной раковины.

Краб: Ясно. Но я все еще не вижу связи этого ни с теорией чисел, ни с моими новыми пластинками.

Ахилл: Видите ли, в математике акусто-поиска часто возникают вопросы, связанные с числом решений неких Диофантовых уравнений. А г-жа Ч годами занималась тем, что пыталась восстановить звуки игры Баха на клавесине (что происходило более двухсот лет тому назад), основываясь на расчетах движения всех молекул в атмосфере в настоящее время.

Муравьед: Но это же совершенно невозможно! Эти звуки утрачены навсегда, утеряны невозратимо!

Ахилл: Так думают непосвященные — но г-жа Ч посвятила много лет этой проблеме и пришла к выводу, что все зависит от количества решений уравнения:

а n+ b n = с n

в положительных числах, при n > 2.

Черепаха: Я могла бы объяснить, при чем здесь это уравнение, но не хочу наскучить присутствующим.

Ахилл: Оказалось, что теория акусто-поиска предсказывает, что звуки Баховского клавесина могут быть восстановлены по движению всех молекул атмосферы при одном из двух условий ЛИБО у этого уравнения есть хотя бы одно решение.

Краб: Удивительно!

Муравьед: Фантастика да и только!

Черепаха: Кто бы мог подумать!

Ахилл: Я хотел сказать, «ЛИБО такое решение существует, ЛИБО существует доказательство, что уравнение НЕ имеет решений!» Итак, г-жа Ч начала кропотливую работу с обоих концов проблемы одновременно Оказалось, что нахождение контрпримера было ключом к нахождению доказательства, так что одно прямо вело к другому.

Краб: Как же это возможно?

Черепаха: Видите ли, мне удалось показать, что структуру любого доказательства Последней Теоремы Ферма — если таковое существует — возможно описать с помощью элегантной формулы, которая зависела бы от величин решения некоего уравнения. Когда я нашла это второе уравнение, к моему удивлению оно оказалось не чем иным как уравнением Ферма. Забавное случайное соотношение между формой и содержанием. Так что, когда я нашла контрпример, мне осталось только использовать эти числа как план для построения доказательства того, что это уравнение не имеет решения. Замечательно просто, если подумать. Не знаю, почему никто не нашел этого результата раньше.

Ахилл: В результате этого неожиданного блестящего математического успеха, г-же Ч удалось провести акусто-поиск о котором она столько лет мечтала. Подарок полученный м-ром Крабом представляет собой осязаемую реализацию этой абстрактной работы.

Страницы


В нашей электронной онлайн библиотеке вы можете бесплатно и без регистрации прочитать «ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда» автора Хофштадтер Даглас на телефоне, андроиде, айфоне, айпаде. Сейчас вы находитесь в разделе „Часть II“ на странице 3. Приятного чтения.